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Quasi-Analytical Static Solution of the Boxed
Microstrip Line Embedded 1n a
Layered Medium

F. Medina, Member, IEEE, and M. Horno, Member, IEEE

Abstract—In this paper, a quasi-analytical method is pre-
sented to carry out the quasi-TEM study of a microstrip line
embedded in a general layered substrate with rectangular en-
closure. Electric walls, magnetic walls and periodic boundary
conditions are considered. The analysis is based on the spectral
domain formulation and the use of a proper expansion of the
free charge distribution (Chebyshev polynomials with edge
condition). Two different approaches are proposed to speed up
the evaluation of the spectral series in such a way that only a
few spectral terms must be retained in the numerical compu-
tations of the mentioned series. The propagation parameters
and the charge distribution are obtained with extreme accuracy
in fractions of one second on a personal computer.

I. INTRODUCTION

ICROSTRIP is undoubtedly one of the most popular

transmission lines used in modern microwave tech-
nology. The propagation characteristics of this transmis-
sion line have been computed by using a variety of nu-
merical and analytical tools during the last three decades.
However, analytical or quasi-analytical solutions have
only been provided for a limited number of cases. Many
of these solutions, based on conformal mapping tech-
niques, can only be applied to certain particular geome-
tries (for example [1]-[3]). Some other numerically effi-
cient methods involving a high degree of analytical
preprocessing and/or physical insight in the nature of the
problem can also be found in the literature. The Wiener-
Hopf method [4], singular integral equation (SIE) [5], [6],
matched asymptotic expansions [7] and other techniques
[8], [9] are good pieces of this type of work. Neverthe-
less, relevant but simple configurations were considered
by those authors.

Recently, several authors have focused their attention
on the exact analysis of different microstrip structures and/
or on the improvement of the computational aspects of
classical numerical techniques. Kretch and Collin [10]
have used a very efficient perturbation-iteration method
for the full-wave analysis of a microstrip line printed on
an anisotropic dielectric substrate. Fikioris et al. [11] have
presented an extremely accurate quasi-TEM study of the
boxed microstrip line printed on a single lossless isotropic
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substrate. In the latter paper, the authors have solved a
Carleman-type integral equation whose kernel (Green’s
function) has been very efficiently computed by using
three alternative rather involved approaches [12]. Uchida
et al. [13] and Homentcovschi [14] have obtained dy-
namic and quasistatic solutions for the open microstrip
problem on a single layer substrate by employing proper
numerical tools in the spectral domain. Efficient space-
domain formulations have also been reported in [15]
(quasi-TEM) and [16] (full-wave).

This work shares the aim with the previously refered to
papers. The structure considered in this paper is the mi-
crostrip line embedded in a layered configuration with ar-
bitrary rectangular boundary conditions (see Fig. 1(a)).
This problem can not be exactly solved but, as will be
shown, can be numerically treated in an extremely effi-
cient way by making use of a suitable analytical prepro-
cessing. Owing to the presence of the layered medium,
the problem is conveniently formulated by means of the
well known spectral domain analysis (SDA). The Green’s
function (static or dynamic) can be easily computed in the
spectral domain using appropriate existing algorithms
which can handle anisotropic and lossy materials. In this
paper we will restrict ourselves to the quasi-TEM model,
since the essential features of the techniques described in
the paper should be readily extended to full-wave for-
mulations. The application of the Ritz and Galerkin meth-
ods in the spectral domain leads to a system of linear
equations whose entries are slowly convergent series. Al-
though the straightforward application of the SDA makes
it possible to obtain results which are accurate enough for
many practical purposes, convergence is not satisfactory.
Moreover, charge distributions can not be accurately
computed with reasonable computational effort. In fact,
erroneous results are likely to be obtained in certain crit-
ical cases. Fortunately, if physically suitable basis func-
tions are used and the asymptotic tails of the series in-
volved in the computations are analytically added, the
power of the SDA can be meaningfully enhanced. Dras-
tic improvement of accuracy and CPU savings can be
achieved in this way. Two different techniques are pro-
posed in this paper to enhance the SDA with a reasonable
degree of generality and relatively low analytical com-
plexity. The first method makes use of the residue cal-
culus technique to speed up the convergence of the series.

0018-9480/92%$03.00 © 1992 IEEE
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Fig. 1. (a) Cross section of the generalized boxed microstrip line. x = 0
and x = a can be e.w., m.w. or p.b.c. y = 0 and y = Hy can be e.w.,
m.w. or 0.b. (b) Asymptotic microstrip problem. The spatial domain
Green’s function for this problem is in Table II.

The second method is based on the consideration of an
appropriate auxiliar asymptotic problem (see Fig. 1(b))
whose Green’s function is analytically known in the spa-
tial domain. Convolution integrals and inner products are
also quasi-analytically calculated. Extremely accurate re-
sults (for both propagation characteristics and charge dis-
tribution) are obtained with this method in fractions of
one second on a PC computer, thus making it appropriate
for CAD purposes. The reliability of the computer codes
has been exhaustively tested by comparing with highly
accurate data available in the literature for single layer
configurations.

Single and symmetrically coupled strips are considered
in this paper, but the method is expected to be extended
to multistrip systems. The method should also be useful
to accelerate the computations when a dynamic model is
used, since convergence problems are mainly associated
with the quasi-TEM limit of the dynamic problem. Any-
way, certain additional improvements are feasible in the
dynamic case. It should be noted that although a closed
structure is considered, open microstrip can be treated
with slight modifications by considering spectral integra-
tion instead of series addition. In fact, for open structures,
a third alternative was explained in [18].

II. OUTLINE OF THE PROBLEM

The general microstrip line analyzed in this paper is
shown in Fig. 1(a). A perfectly conducting, w wide, zero-
thickness strip is embedded in a layered medium com-
posed of lossless/lossy isotropic/anisotropic slabs. The
whole structure is assumed to be placed inside a rectan-
gular enclosure bounded by the planes x =0, x =a,y =
0,y = Hy. The planes y = 0, y = a can be electric walls
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(e.w.), magnetic walls (m.w.) or open boundaries (0.b.).
The planes x = 0, x = g can be e.w., m.w. or periodic
boundary conditions (p.b.c.). It is obvious that a wide
variety of single and symmetrically coupled strip config-
urations are particular cases of the structure appearing in
Fig. 1(a).

The quasi-TEM analysis of the transmission line shown
in Fig. 1(a) reduces to solving the bidimensional La-
place’s problem in the x-y plane. Since an arbitrary num-
ber of layers must be considered, it is more appropriate
to work in the spectral domain than in the spatial domain.
The spectral static Green’s function (SSGF), Gy, is read-
ily computed by using the method in [17] (lossy and/or
magnetic materials can also be accommodated by follow-
ing [18]). For simplicity purposes, we will restrict our-
selves in the exposition to the dielectric lossless case.
Anyway, the results can be easily applied to lossy and/or
magnetic cases, since differences mainly arise from the
Green’s function rather than from the analytical and com-
putational aspects, which are basically the same as those
treated in this paper. Although the spectral domain anal-
ysis of the microstrip line has been widely discussed in
the literature, a brief summary will be given next in order
to put this work in context. The relationship between the
Fourier transforms of the surface charge distribution on
the strip, &, and the potential distribution at the plane

where the strip is printed, ¢, is given by
Gulew,) * §(er,) = blay) (D

where a, stands for the Fourier variable. The proper def-
inition of «, and the Fourier transform depends on the
nature of the boundary conditions in x = 0 and x = a.
The suitable choices at four different common situations
are summarized in Table 1. The problem posed by (1) can
be solved by using the Ritz method (in lossless cases) [17]
or Galerkin method [18]. In both cases, the unknown free
surface charge distribution, o(x), is expanded into a set
of suitable basis functions whose coeflicients are com-
puted by requiring that the electrostatic energy per unit
length is a minimum (Ritz method) or that the potential
on the strip is constant (Galerkin method). Both tech-
niques lead to a set of linear equations whose unknowns
are the expansion coeflicients. In order to prevent the size
of this system from being too large, it is crucial to choose
the basis functions in an adequate way. Concerning this
subject, it has been conveniently stablished in the litera-
ture that a particularly suitable set of basis functions are
the Chebyshev polynomials weighed by the Maxwell edge
condition. The surface charge distribution can then be
written as follows:
nf
gx) = > a,0,(%)
g=0

2 1 il X — S
=E X — 5 zqgoaqTq<W/2>;
1‘<w/2>

s—w/2<x<s+w/2 )
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TABLE 1
FOURIER VARIABLE (F.V.), FOURIER TRANSFORM DEFINITION (F.T.D.) AND
FOURIER TRANSFORMS OF BASIS FUNCTIONS IN (2) (F.T.B.F.) FOR
DIFFERENT COMBINATIONS OF LATERAL BOUNDARY CONDITIONS. ELECTRIC
WALL = e.w.; MAGNETIC WALL = m.w., PERIODIC BOUNDARY
CONDITION = p.b.c.

x = 0:e.w. x =0 mw.
X =aew. X =aew
nw @n — 7
v =y w= T
F.T.D. “ “
(5 () o{x) sin (o, x) dx g (x) cos (o, x) dx
n o 0
F.T.B.F. J(a,w/2)- J(,w/2)-
p even (—1Y/% sin () (=P~ D72 cos (a,s)
p odd (— 1?72 cos (a,s) (—19* D72 gin (o, 5)
x = 0: p.b.c. x = 0:m.w.
x =a p.b.c. X = a:mw.
2nw nmw
E.V. o, = — o, = —
a a
F.T.D. “ ¢ )
(3 (ay)) . (x) exp (Jjo,x) dx . a(x) exp (jo,x) dx
F.T.B.F. Jfo,w /2) J(a,w/2)
p even (—1)” exp (ja,s) (=172 cos (a,s)
p odd (= 1) exp (jou,s) (=D)P* D2 5in (a,5)

When the basis functions in (2) are employed and the Gal-
erkin’s method is applied to (1), the following system of
linear equations for the coefficients a, is obtained:

A

g g =B, where p,gq =20, nf (3)

APw‘I = ngl 5—;(0(") * G~M(Oln) * 64(04,1); Bp = 6()'1)

“4)

where 6, stands for the Fourier transform of the basis
functions in (2) (which are tabulated in Table I) and §; ),
is the Kronecker delta. It should be pointed out that the
term n = 0 must be added in (4) when necessary and that
only even order basis functions should be considered in
the case of lateral periodic boundary conditions.

The computational effort is mainly spent in the calcu-
lation of the entries of the Galerkin (or Ritz) matrix, Ay g
The entries are slowly convergent series involving prod-
ucts of the Fourier transforms of the basis functions and
the SSGF. Owing to the wide spectrum of these functions,
the truncation of the spectral series may give place to se-
rious errors in case a suitable technique to speed up the
computations is not employed. This fact is particularly
true for narrow and/or strongly coupled strips, specially
when the computation of the charge distribution is re-
quired. In order to speed up the computation of (4), these
series are split in the following way:

Apg = 2 551Gy — Gijls, + S, (5)
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(6)

where €7 is the permittivity (or the ‘‘equivalent’” permit-
tivity for anisotropic [17] or magnetic cases [18]) of the
ith layer. Since Gy, exponentially reachs its asymptotic
limit, G%, the first term in (5) typically converges within
a few Fourier terms. However, the convergence of S, , is
extremely slow. Fortunately, analytical or quasi-analyti-
cal expressions can be provided for S, , when the basis
functions in (2) are used. This will be shown in the fol-
lowing two sections.

III. FirsT METHOD: COMPUTATION OF TAILS BY
RESIDUE CALCULUS TECHNIQUE

The first technique to compute efficiently S, , is based
on transforming (6) into very quick convergent power se-
ries. The general term of the series S, ; involves products
of integer order first kind Bessel functions ( J,) and, even-
tually, trigonometric functions. Two kinds of series must
be calculated:

g i J(am)J (an) cos (cn); p + qis even
P S n sin (cn);  p + qis odd
@]
2 Jam)] (an)
S)a = 711#._”‘1_; p + gis even - ®
with & = (7w/2a) or (xw/4a) and ¢ = (2ws/a) or

(ms /a). These series can be viewed as the addition of the
residue of certain complex functions. This is the basis of
the first summation technique reported in this work.

A. Computation of S, ,
Let us consider the complex function:

B Jy(a2)J (az) exp ( jcz)'
z[exp (j2mwz) — 1]

f@ ptg=1 (9
If (9) is integrated in the complex z-plane along the closed
contour shown in Fig. 2(a), the application of the Cauchy
theorem leads to the following expression:

Z(—l)“’”/” }S‘” L(ep)I (cvy)

! p—

P (=neran2§ o @y sinh (ay)

P + giseven

{cosh [(x — oyl;
- (10)

sinh [(m — ¢)y]; p + gisodd.

The integrals in (10) involving modified Bessel func-
tions—I,—can be now expressed in terms of very quickly
convergent power series as it is explained in the Appen-
dix. For most practical purposes, the power series can be
viewed as closed form expressions, since very few terms
need to be retained in a typical case. Anyway, these for-
mulas are still useful even in those critical cases requiring
larger number of terms.
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Fig. 2. Closed paths 1n the complex plane used in the first method for the
evaluation of the spectral series.

Equation (9) cannot be applied to the case p = 0, g =
0 due to the existence of a double pole in z = 0 in this
case. In order to overcome this difficulty, let us consider:

dSoo
do

The series (11) can now be added by using the Cauchy
theorem once again. In this case, the complex function to
be integrated around the contour shown in Fig. 2(a) must
be z - f(z) (where f(z) is obtained by takingp = 0, g =
1 in (9)). Acting in this way, the following expression is
obtained:

dSoo

= -2 g,l Jo(an)J (an) cos (cn) (11)

e sinh [(x ~ c)yl
do So Io(al(ay) _si nh__(7r—y) —

Then, the right hand term in (12) is transformed into a
power series in . This series is integrated with respect to
this parameter getting the desired expression for Sg . The
final results are shown in Appendix.

dy (12)

B. Computation of S, ,
Let us now consider the complex function:

@ = Jp(az)d (az) exp (j27z) + g is even
N N e T

(13)

If (13) is integrated along the closed contour in Fig. 2(b),
(8) can be rewritten:

Sy, = S L0 dt + 2(=1)®*a/?
’ 0 t

27
« LO1,(@) exp <— o t>

(5

The first term in the second member is the Weber-
Schafheitlin integral, which can be found in closed form
elsewhere [[19], p. 693]. The second term is reduced to
a very quick convergent power series such as that shown

dt 14)

in the Appendix. Caution should be taken when p = g =
0. The same derivation/integration process described in
the previous section must be applied here. The final re-
sults for this case have been also included in the Appen-
dix.

To sum up, all the asymptotic tails appearing in the
spectral domain calculations are very efficiently computed
by using the formulas included in this section and in the
Appendix. It should be noticed here that the final expres-
sions in the Appendix only involve intrinsic FORTRAN
functions—i.e., Bessel functions or other special func-
tions subroutines are not used—resulting in additional
CPU time savings.

IV. SEcoND METHOD: SPATIAL DoMAIN COMPUTATION
oF TAILS

A second procedure of similar numerical efficiency as
that explained in the previous section is based on the eval-
uation of S, , by using a proper integration in the spatial
domain. Making use of Parseval and convolution theo-
rems, (6) can be rewritten in the following way:

X — 8
n (5)
w/2
2 g &
strip

o x ~ s\
1_<wm>
x' =5

2 Tq< W/2>

T ahj(x7x’)

W x—s2
\ll‘<w/z>

where G%(x, x') is the spatial domain Green’s function
of the ‘‘asymptotic problem’’ (or a related function). The
asymptotic problem corresponds to the structure shown in
Fig. 1(b). The functions G3;(x, x') are tabulated in Table
II for the four situations considered in Table I.

The double integrals in (15) could be directly evaluated
via the Gauss-Chebyshev quadratures, but the singular
behavior of G4(x, x') greatly restricts the computational
efficiency. A very large number of quadrature points
needs to be used to get acceptable accuracy. In order to
overcome this drawback, the logarithmic singularity of
G4j(x, x") should be extracted and the corresponding con-
volution integral should be analytically computed. When
the strip is close to the side wall (x = 0, a), the nearest
image line charge significantly affects the convergence of
the convolutions. Owing to this, in addition to the sin-
gularity taking place in the integration interval, the first
two reflected images have been pulled out of the Green’s
function. The singular terms explicitly considered in the
computations, S(x, x'), have also been included in Table
II. Let us consider the case in which x = 0 and x = a are
electric walls. The convolutions involving the singular

Sp’q - Sstrip dx

5)
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TABLE I
ASYMPTOTIC SPATIAL GREEN’S FUNCTION, Gjj(x, x'), AND ANALYTICALLY TREATED SINGULAR PART, S (x,
x "), FOR THE COMBINATIONS OF LATERAL BOUNDARY CONDITIONS IN TABLE

Gyx, x') S{x, x') (Singular Terms)

x = 0:ew. 1 . g 1 ,

- In|sin{—|x —x’ - {In |x — x|
X = a:ew. 2me,, 2a 27e,,

[ <7r < >>B —In[Qa — x — x")(x + x"]}
In|sin{—{x+x’
2a

x =0

} 1
2me,,

{In[{x — x| (x + x")]

—In 2a — x ~ x")}

= (0: p.b. 1 1
¥ =0:pbe - ln|:2sin<Ix—x’ >w - {In|x — x|
x = a: pb.c 2me,, a | 2T,
+Infla+x~xYa—x+x)]}
=0:m. 1 1
* mw - {ln[étsin <I(x+x’)>J - {In|x — x'|
X = a mw 27"€eq a 27e,,

+In[x + x)2a — x ~ x"]}

terms in this case are given by the following expressions:

x' =

2 w/2
Lo
strip W

Ii(g, x) = In|x — x'|
1 — <u ’
w/2
X =5
-T <—> % q=1
—{ T \w/2 (16)
In(w/4); q=0
x' =
2 Tq< w/2 >
I(g, x) = X dx' — In(x + x")
strip ™W x' — s 2
1‘<wm>
q
-z ; =1
_ /e q a7
In (wz,/4); =0
beingz, = Vi@ — 1 —u; zp=vu®> — 1 + u;
_x—l—s
"= w/2
x' — s
T
2 "< w/2 >
(g, x) = S dx' —
stnp W x — 5 2
1_.
(57
*InQRa —x —x)
-(=1%{/q; = 1
_y~=D%i/g g 18
In (wz,/4);  g=0

beingz; = Vil — 1 —u; 7z, =i — 1 + u;

_2a—x—s
"= w/2

For the other cases in Table II, we only need to replace x
by a — xin (17) and (18) to obtain the necessary integrals.
Note that the regularized Green’s function, G (x, x') —
S(x, x'), is a very smooth function in the whole integra-
tion interval. So, this part of the convolutions can be com-
puted by using very few Gauss-Chebyshev quadrature
points. In our programs, we have used nf + 2 quadrature
points where nf is the number of basis functions used in
the computations. This choice typically ensures more than
eight significant figures to be correct.

Once the convolution integrals have been efliciently
evaluated, the inner products in (15) have to be computed.
The part of the inner products involving the singular term
I1{g, x) can be obtained in closed form:

, ()

(18)

Ssmpdx;& EY Ii(g, x)
- (55)
-1/2p iftp=q=#0
= 0 ifp #¢q (19)
Inw/4) ifp=g=0

Numerical Gauss-Chebyshev quadratures are now used to
compute the rest of the inner products. Since no singular-
ities are involved, very high accuracy is achieved by also
using nf + 2 quadrature points in the computations. Only
in nonrealistic situations (for example, impracticable
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spacing between lines), the number of points should be
increased above that value, as will be commented in the
results section. Anyway, even in these cases, conver-
gence is achieved with a reasonable number of quadrature
points and the procedure is still very useful. It should be
noticed that the convolution integrals are computed just
once at the quadrature points corresponding to the inner
products. As a consequence of this, the application of a
point matching scheme is not essentially more efficient
than the Galerkin technique used in this work.

V. NUMERICAL RESULTS

The theory developed in the previous two sections has
been used to write FORTRAN computer programs which
run on a PC computer working at 20 MHz. Double pre-
cision is used in the computations in order to check the
accuracy of the method. It has been found that both pro-
cedures provide exactly the same resuits for the charac-
teristic parameters and the coeflicients of the charge
distribution (until 16 significant digits equal). The con-
vergence of the series (20), (25), (26) and (27) and the
accuracy of the Gauss—-Chebyshev quadratures used to
compute (15) have been investigated before generating
numerical data.

The number of terms to be retained in the computation
of the series in the Appendix 1 depends on the aspect ratio
r = (s — w/2)/w. This number is related to the distance
from the strip to the side walls. In most practical cases
this ratio is not too small, and just a few terms are enough
to achieve convergence (typically less than 3 terms). More
terms need to be added when r is small, that is, when very
tightly coupled strips or one strip very close to the side
wall are considered. In any case, we have not found se-
rious numerical problems. A typical convergence pattern
is shown in Table III. In this table we display the number
of terms to be retained (k,,,,) to get five significant figures
(in the characteristic impedance and the phase velocity)
for different values of r. The results in Table III were
obtained by using nf = 6 in (2), and the CPU time was
not bigger than 0.5 seconds in the worst case (this time
includes the computations for the structure without di-
electric).

Let us consider now the efficiency of the second method
for the computation of the asymptotic tails. As stated
above, the part of the convolution integrals in (15) in-
volving the regularized Green’s function is computed in
all cases by using nf + 2 quadrature points—that is more
than enough. Inner products could require more quad-
rature points when r is extremely small. Nevertheless, this
technique is much less sensitive to the value of r. All the
results in Table III were obtained with more than 8 digits
accuracy by using nf + 2 quadrature points in the evalu-
ation of the inner products. In the extreme and impractical
case r = 0.005, 5 significant figures are obtained by using
nf + 14 quadrature points. In this case the CPU time was
0.7 seconds. In most cases this technique works slightly
better than the first one. Anyway, the use of any of these

TABLE III
NUMBER OF TERMS (ky,,x) USED IN THE
SERIES IN APPENDIX A TO GET FIVE
COoRRECT DIGITS IN THE CHARACTERISTIC
PARAMETERS AS A FUNCTION OF THE
ASPECT RATIO ¥

techniques results in drastic improvement of the SDA
scheme. For comparison purposes, it should be empha-
sized that, if no analytical preprocessing is used, the
achievement of a similar accuracy for the capacitance re-
quires adding up 5 - 10* Fourier terms (more than 4 min-
utes of CPU). Prohibitive CPU time should be required
for narrower strips. On the contrary we must only add a
few spectral terms (typically ten terms are enough) if the
techniques in this paper are employed. Moreover, the
convergence features of the methods described here do
not depend on the strip width but only slightly on the as-
pect ratio r. This is an additional advantage of these pro-
cedures over other asymptotic extractions used in the past
by the authors (a brief description can be found in the
Appendix of [20]). Bessel functions were also approxi-
mated in that case by their asymptotic limit together with
the Green’s function. Good convergence was achieved
with that method, but its efficiency decreases with narrow
strips and/or if many basis functions are required (nf is
large)—this is the case for wide strips or strong cou-
pling. The techniques in this paper have no limitations
with respect to the number of basis functions or the strips
width. In particular, the off-diagonal elements of the Ritz-
Galerkin matrix are very accurately computed in contrast
to the other techniques. Summing it up, the methods pre-
sented here make it possible to obtain much more accurate
results for the charge distribution and the characteristic
parameters with less CPU time and much higher reliabil-
ity and generality than the other techniques previously
used by us.

The numerical results provided by our programs have
been also conveniently checked by comparing with highly
accurate data taken from the literature. The propagation
parameters obtained for certain structures by means of ex-
act conformal mapping are reproduced with exactness
within the accuracy of the computer. However the accu-
racy of our results is better illustrated by considering the
coefficients of the expansion (2). Recently Fikioris et al.
[11] reported highly accurate data for the charge distri-
bution on a boxed microstrip. These results were obtained
by using very efficient quasi-analytical expressions for the
spatial Green’s function of a single layer shielded geom-
etry in combination with the Carleman-Vekua regular-
ization method. The methods in our paper need less ana-
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TABLE IV
COEFFICIENTS OF THE CHARGE DISTRIBUTION FOR SINGLE AND COUPLED
WITH THE ONES REPORTED IN [[11], TABLE I]. DIMENSIONS AND ELECTRICAL
CHARACTERISTICS ARE THE SAME THAN IN THAT REFERENCE.
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TABLE V
CHARACTERISTIC PARAMETERS (CHARACTERISTIC IMPEDANCE, Z, AND
EFFECTIVE DIELECTRIC CONSTANT, €.4) AND COEFFICIENTS OF THE CHARGE
DISTRIBUTION EXPANSION (2) FOR SUSPENDED COUPLED STRIPS.
DIMENSIONS: @ = Smm, h; = 3 mm, h, = .635mm. i; = Smm, w = 1

Fikioris et al. [11] Method # 1 Method # 2 mm, s = 0.55 mm. ¢, = €3 = €3, €2 = 9.6 ¢.
(single strip) (Q = 0 in [11]) 0Odd Mode Even Mode
a,/a, 43027625 .43030186 43030186 a;/aq —0.92016161 +0.75444525
a,/a, .15020234 .15020671 .15020671 ay/a, +0.36842245 +0.02221162
as/a, .06199140 .06199221 .06199221 as/ay ~0.13634537 +0.03474569
ay/ag .021819421 .021820228 .021820228 a;/aq +0.06394639 —0.01397521
as/aq .007849483 .007850208 007850208 as/aq -0.03201018 +0.00487788
aq/aq .002990657 .00291345 .002991345 as/ao +0.01585873 —0.00223805
a;/ay —0.00788614 +0.00104146
(coupled strips, odd mode) (Q = —11n {11]) ag/ag +0.00396332 —0.00048860
ag/ aq —0.00200885 +0.00023665
a,/ay 40354420 .40354433 .40354433 ao/aq +0.00102446 —0.00011651
a/a, .15388507 .15388538 .15388538
a;/a, .05985819 .05985868 .05985868 Z(nf = 5) 30.8366 Q 182.8800 Q
a;/aq .021669194 021669701 .021669701 Z (nf = 10) 30.8360 Q 182.8799 Q
as/aq .007719048 .007719641 .007719641
ag/aq .002948209 .002948744 .002948744 € (1f = 5) 4.608920 2.136619
e (nf = 10) 4.608930 2.136619
(coupled strips, even mode) (Q = +1 in [11])
a,/a, 45614674 45619712 45619712 . .
)/ a, 14663990 14664847 14664847 consequence of the stationary nature of the capacitance
as/aq .06405526 .06405633 .06405633 per unit length.
W;“o '8?,%3?‘512% gg;ggggﬁ ’833?222? Although this paper has focused its attention on the
as/ag . R . A
au/dq 1003031928 10030325802 0030325802 quasi-TEM model, the method developed here should be

lytical effort and are applied to multilayer geometries
while keeping very high numerical efficiency. In Table IV
we compare our results with the results reported in [[11],
Table I] for the case nf = 6. It can be seen that the agree-
ment is excellent in all cases. Numerical results obtained
with the two methods in this paper are exactly equal. One
half of second is the typical CPU time to get these results
even though the strip is very close to the side wall. The
results reported in [[11], Table II] were reproduced by us
within 6 or 7 significant figures with CPU times ranging
from 0.1 to 0.5 seconds.

Computations using 20 basis functions were achieved
in less than 2 seconds on a 20 MHz personal computer
(an accuracy of 8 significant figures was imposed to the
coefficients of the surface charge expansion). The use of
a large number of basis functions is necessary when close
proximity or very large strips are involved. As it can be
seen, the numerical efficiency, reliability and usefulness
of the methods in this paper have been widely proven.

As a final example we present in Table V the results
for the coeflicients of the charge distribution and charac-
teristic parameters of a pair of coupled strips on sus-
pended substrate. We have used nf = 10 for these com-
putations and also nf = 5. The agreement between the
results for the characteristic impedance, Z, and the effec-
tive permittivity when nf = 5 and 10 is better than 1 /10,
However, a,y/ay = 0.001 for the odd mode and =0.0001
for the even mode. This means that the number of basis
functions that has to be used to compute the charge dis-
tribution in an accurate way is bigger than that required
to compute the characteristic parameters. This is a natural

also useful in spectral full-wave computations, since the
quasi-static limit of the dynamic problem—which is the
main factor that limits the convergence—can be analyti-
cally treated as explained in this paper. However, the con-
vergence is expected to be worse in the full-wave case,
since the dyadic Green’s function tends to its asymptotic
limit more slowly than the static Green’s function. Some
improvements are expected to be carried out in this sense
in a forthcoming work.

VI. CoNCLUSION

In this paper we have presented two methods which sig-
nificantly enhance the numerical convergence of the spec-
tral domain computations of a microstrip line with rectan-
gular boundary conditions and layered substrate. By using
these techniques, extremely accurate results for both char-
acteristic parameters and charge distributions can be ob-
tained on a PC computer in a very short CPU time. Vir-
tually exact solutions can be obtained for a variety of
single and symmetrically coupled microstrip structures.
In spite of the fact that the techniques are very general,
they are not as cumbersome as other techniques previ-
ously reported in the literature. The extension of these
techniques to multistrip systems and full-wave analysis is
the object of a future work.

APPENDIX

In this Appendix, very quickly convergent expressions
for the integral in (10) and the integral with respect o of
(12) are obtained. In order to evaluate these integrals, the
product of modified Bessel functions is expanded as a se-
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ries of powers by using [[19], p. 960]. Acting in this way,
we can write:

Soo p L(ay) (ay) - {cosh [(w - c)y]}

0 Y y sinh (my) sinh [(7 ~— c)y]

= a p+q+2k
=2 <5> F(p, 4, b

{cosh [(r — c)y]}
sinh [(r — ©)y]

Similar considerations allow us to compute the integral
appearing as the right hand second term in (12). The only
difference is that the closed contour to be considered is
that shown in Fig. 2(b). The results are

L) exp <— %r t>
dt

)

oo a p+q+2k
. Sm yp+q+2k—1 (20) = kg() F(P, q, k) <Zl—7;> f(P + q + 2k’ 1)
0 sinh (7y) )
where 26)
T'(p+qg+2k+ DI'(p + g + 2k
F(p, g k) = Ptg X+ g+ 20 U

where I is the gamma function. The integrals appearing
in the previous expressions are analytically known [[19],
pp. 350]:

* x™ cosh (Bx) 1 d”
So d sinh (7x) {sinh (8x) } Y ®/2)

This expression is used for low values of m (m < 9 which
is enough in almost all practical cases). If larger values
of m are required to achieve convergence (this rarely oc-
curs), we use an alternative expression [[19], pp. 349]:

{cosh (Bx)}

® sinh (Gx)

S " dx
0 sinh (7x)

_ T(m)
- eon

22)

1

™
(23)

where ¢ is the Riemann’s zeta function. In the case p =
0, g = 1 the following identity [[19], p. 1074, p. 945]
must be used:

{,q) — 1,1 — g) = 7 coth (7q) (24)

As it was stated in Section III, the series corresponding
to p, g = 0 requires an special treatment. The integral in
(12) can be expressed as a power series similar to (20). If
we now integrate with respect to o (bearing in mind that
the series must give the correct value for o = 0), S can
be finally expressed as

1
So0 = Eln [2(1 — cos (0)]

S 2k + 2) 2%+2
2 /Eo 2k + 2Tk + 1)k + 1) <Z}F>
SRk + 2, 9) + 2k + 2,1 — q)); q:i;

(25)

'p+qg+k+Dlg+k+DI'(p + b+ DI+ 1)

For the particular case p = 0, g = 0, in (8) a derivation/
integration process similar to that applied to get (25) gives
place to

co

2212k + 2)
—oT%k + 2Tk + Dtk + 1)

o \2+2
. <——> Rk + 2, 1).
47

S§o=In2/a) + .

27)

When a large number of basis functions is used (p or ¢
is large) or a relatively large number of terms is needed
in the computations (k is large), overflow problems can
arise. Owing to this, from a computational point of view,
it is preferable to work with the natural logarithms of the
factors involved in the general term of the series in this
appendix.
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